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Abstract—Speech synthesis systems provided for the Persian 
language so far need various large-scale speech corpora to 
synthesize several target speakers’ voice. Accordingly, 
synthesizing speech with a small amount of data seems to be 
essential in Persian. Taking advantage of a speaker adaptation in 
the speech synthesis systems makes it possible to generate speech 
with remarkable quality when the data of the speaker are 
limited. Here we conducted this method for the first time in 
Persian. This paper describes speaker adaptation based on 
Hidden Markov Models (HMMs) in Persian speech synthesis 
system for FARsi Speech DATabase (FARSDAT). In this regard, 
we prepared the whole FARSDAT, then for synthesizing speech 
with arbitrary speaker characteristics, we trained the average 
voice units; afterward, the adapted model was obtained by 
transforming the average voice model. We demonstrate that a 
few speech data of a target speaker are sufficient to obtain high 
quality synthetic speech, and we set out synthetic speech which 
has been generated from adapted models by using only 88 
utterances is very close to that from speaker dependent models 
trained using 355 utterances. 
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I. INTRODUCTION

Speech synthesis is referred to a technique which converts 
symbolic linguistic representations into human speech. A large 
variety of methods have been proposed, however HMM-based 
approach has dominated other methods over the last ten years 
[1, 2]. 

The main problem of building a new voice is to collect and 
prepare a labeled speech data. It is desirable to synthesize high 
quality speech using a small amount of speech data. This goal 
is achieved by employing speaker adaptation framework [3]. 
In other words, the modeling strategy is chosen by considering 
the amount of available speech data which belongs to the 
target speaker. Broadly speaking, speaker-dependent 
framework is an appropriate choice for a large amount of 
speech data while, adapting the average voice model to the 
target speaker [3] becomes favorable when available speech 
data of the target speaker are limited [4]. 

In speaker-adaptive framework, a large variety of 
contextual information extracted from several speakers’ data, 
are utilized to build the average voice model. It provides a 
priori information for the speaker adaptation, and a robust 
basis is obtained as a result [5]. Thereby, the stable 

synthesized speech can be achieved even if the amount of 
speech data available for the target speaker is small. 

Speaker adaptation is an issue of interest in most speech 
processing applications. Speaker adaptation techniques have 
been used in speech recognition systems [6] for quite a long 
time. Then, by introducing the HMM-based speech synthesis 
systems, these techniques are adopted to be used for speech 
synthesis. Speaker-adaptive HMM-based speech synthesis was 
initially implemented for Japanese language [4], and later was 
applied to English [7-10]. In this work, it is incorporated in 
Persian speech synthesis. 

This paper describes the speaker-adaptive HMM-based 
speech synthesis framework for FARSDAT database [11]. 
FARSDAT is an Automatic Speech Recognition (ASR) corpus 
comprising utterances from 100 Persian speakers of different 
ages, sex, educations, and dialects. In this study, we extracted 
the features and contextual information of all the 100 speakers 
automatically, thus we could synthesize 100 speaker-adaptive 
HMM-based speech synthesis systems. Speech synthesis 
systems resulted from this work are valuable sources which 
can be used for further research areas such as eigenvoice 
conversion [12]. 

For generating each speaker’s synthesis system, at first we 
model the average voice using train data of several speakers, 
then the adapted model is obtained by transforming the 
average voice model, using adaptation data of the target 
speaker, and finally synthesized speech are obtained from this 
adapted model. 

The rest of the paper is organized as follows. Section 2 
describes the Speaker-adaptive HMM-based speech synthesis 
system. In Section 3, database preparation is explained. 
Experimental conditions and results are described in Section 4, 
and concluding remarks and our plans for future work are 
presented in the final section.

II. SPEAKER-ADAPTIVE HMM-BASED SPEECH SYNTHESIS 
SYSTEM

As shown in Figure 1, the overall speaker-adaptive HMM-
based speech synthesis framework consists of three stages 
namely: training, adaptation, and synthesis. In the following 
subsections, more details about these stages are given. 
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A. Training the average voice model 
In this stage, context-dependent phoneme HMMs are 

trained by using speech data of several speakers, that is, 
training data. Trained context-dependent phoneme HMMs are 
obtained as follow.

We use spectral, excitation and state duration as 
parameters which are modeled for each context-dependent 
phoneme HMMs. Spectral parameters consist of mel-cepstral 
coefficients [13], their delta and delta-delta values, and for the 
excitation, the fundamental frequency consists of F0 logarithm 
in addition to its delta and delta-delta.

Firstly, spectral and F0 coefficients are extracted from the 
training speech dataset utterances and modeled by multi-
stream HMMs. Output distributions for the spectral and F0 
coefficients are modeled using a continuous probability 
distribution and multi-space probability distribution (MSD), 
respectively [2]. 

For each phoneme a context-independent HMM is trained 
as an initial model for corresponding context-dependent 
model. There are a large number of contextual combinations, 
and the speech dataset could not cover all of them; therefore, 
the decision-tree-based context clustering technique [14, 15] is 
applied separately to the spectral and F0 coefficients of the 
context-dependent phoneme HMMs. In the clustering 
techniques, a decision tree is constructed and similar models 
are tied based on predetermined criteria. Then re-estimation 

processes of the context-dependent phoneme HMMs are 
performed using the Baum-Welch (EM) algorithm. Finally, 
state durations are modeled by a multivariate Gaussian 
distribution [16], and the same state clustering technique is 
applied to the state duration models. 

B. Adapting to the target speaker 
In this phase, the average voice model, obtained from the 

training stage, is transformed and adapted to the target speaker 
using a small amount of speech data uttered by the target 
speaker. We can use a large variety of algorithms to achieve 
this goal, for instance, we can use the maximum likelihood 
linear regression (MLLR) algorithm [17] and MSD-MLLR 
algorithm [18] for spectrum and F0 adaptation, respectively. 

C. Speech Synthesis 
In the synthesis stage, first, an arbitrary given text is 

transformed into a sequence of context-dependent phoneme 
labels. In our work this is carried out by constructing a 
hierarchical tree for sentence utterance structure. Based on the 
label sequence, a sentence HMM is constructed by 
concatenating context-dependent phoneme HMMs. Spectral 
and F0 parameters of the sequence are generated from the 
resulting sentence context-dependent HMM, in which the 
phoneme duration are determined using state duration 
distributions. Finally, using an MLSA (Mel Log Spectral 
Approximation) filter [19, 20], speech is synthesized from the 
generated mel-cepstral and F0 parameter sequences. 

III. DATABASE PREPARATION

For adapting Persian speakers, it is needed to consider 
special characteristics of this language, including utterance 
structure and the contextual factors. In this section details 
about FARSDAT and the pre-processing procedure are 
described. 

The FARSDAT has been produced for speech and speaker 
recognition purposes in addition to linguistic research. 
Nevertheless, the above-mentioned method of synthesizing 
speech provides high quality voices by using these ASR 
corpora. Since FARSDAT includes a large number of 
speakers, this makes it possible to produce an enormous 
number of voices automatically. Consequently, this advantage 
enables us to improve the performance of significant 
applications such as eigenvoice conversion. 

Each FARSDAT speaker has uttered roughly 300 unique 
utterances with the length of about 10 seconds in average.
Manual phoneme-level labeling has been done for all 
utterances. FARSDAT sampling rate is 22.5 KHz, and its 
signal-to-noise ratio is 34 dB. 

Since this database is not specifically designed for the text-
to-speech (TTS) purpose, we had to go through certain pre-
processing steps which, provides considered contextual 
information. In the rest of this section we briefly explain the 
FARSDAT preparations steps. 

Figure 1. Overview of the average-voice-based speech synthesis system [9]. 



A. Extracting transcription 
All utterances in FARSDAT were manually labeled both 

phonetically and phonemically. Hence, by considering this 
property we extracted the transcription of utterances using a 
Persian lexicon. This lexicon contains 60000 most commonly 
used words in the Persian. Afterward, for unspecified words, 
we used Peykare corpus [21]; this corpus is used because of 
the significant similarity that exists between Peykare and 
FARSDAT. Finally the remaining indeterminate words are 
specified manually. 

B. Phoneme segmentation 
The segmentation system employed here is based on the 

Hidden Markov Models Toolkit (HTK) [22]. Speech data of 
FARSDAT are used for modeling the phoneme HMMs. 
Therefore, MLLR (maximum likelihood linear regression) 
adaptation [17] scheme is used to adapt phoneme HMMs 
incorporating the speech data of each speaker. Finally, each 
speaker’s adapted phoneme HMM is used for segmenting the 
data of that particular speaker. The segmentation is carried out 
by the Viterbi algorithm [23]. 

This method provides phoneme boundaries of FARSDAT, 
with a remarkable accuracy. 

C. POS tagging 
The most satisfactory approaches to specify Part Of 

Speech (POS) tags are HMM-based; therefore, we applied this 
parametric method. In Persian there are 25 different tags for 
words. 

D. Specifing the stress pattern 
Since the stress pattern in the Persian language is almost 

regulated, we simply used the specified POS tags and 
determine the stress pattern of all the utterances in the 
FARSDAT automatically. 

IV. EXPERIMENTS

A. Experimental conditions 
Speech signals were resampled at a rate of 16 KHz and 

windowed by a 25-ms Blackman window with a 5-ms shift. 
The feature vector consists of mel-cepstral coefficients, log 
fundamental frequency, and their delta and delta-delta 
parameters. The mel-cepstral coefficients were obtained from 
speech signal using a mel-cepstral analysis technique [20]. 5-
state left-to-right context-dependent HMMs without skip paths 
were used. 

Utterances from FARSDAT were used for training and 
adaptation. The average voice model HMMs were trained 
using arbitrarily-chosen four male and four female speakers’ 
speech data, and the adapted model HMMs were achieved 
using one male speaker speech data as the target speaker.

The average voice model was trained using about 300 
utterances for each training speaker. The average voice model 
was then adapted to the target speaker using the adaptation 
data whose utterances were not included in the training data. 
The adaptation was performed using MLLR adaptation [17] 
and MAP (maximum a posteriori) estimation [24, 25]. MLLR 

and MAP estimation were carried out sequentially for 
transforming the average voice model. 

In the modeling of the synthesis units, the phonetic and 
linguistic contexts were taken into account. The Persian 
phonetic and linguistic contexts employed contain phonetic-
level, syllable-level, word-level and utterance-level features. 
Some of the contextual factors that are considered are as 
follow: 

• Phoneme 

� Preceding, current and succeeding phoneme. 

� Position of current phoneme in current syllable. 

• Syllable

� Stress of preceding, current and succeeding 
syllable.

� Position of current syllable in current word.

� Type of current syllable (syllables in the Persian 
language may be structured as CV, CVC, or 
CVCC).

• Word

� Part Of Speech (POS) of preceding, current and 
succeeding word.

� Position of current word in current utterance.

� Current word contains “Ezafe” or not (Ezafe is a 
special feature in Persian which is the short vowel 
“e” and placed between two words such that it is 
not written but pronounced).

• Utterance

� Number of syllables in current utterance. 

� Number of words in current utterance. 

� Type of current utterance. 

B. Experimental Results 
The above-mentioned speech synthesis method is 

evaluated in this subsection. Hence, two subjective tests are 
proposed. In the first test, we compared the quality of the 
synthesized speech, which is generated from the adapted 
models, with the synthesized speech resulted from the 
speaker-dependent model. On the other test, the comparison is 
between the synthesized speech of the adapted models when 
the number of adapting data are changing.

In both experiments, the quality of the adapted model is 
determined by a paired comparison test. Subjects were ten 
persons who were presented with pairs of synthesized speech
from different models in random order and then were asked 
about their preference. For each subject, seven test utterances 
were chosen randomly, out of eighteen test utterances which 
were contained in neither the training nor the adaptation data 
utterance sets. We then conducted comparison category rating 
(CCR) test [26] to evaluate the effectiveness of synthesized 
speech from the adapted model. In CCR, the qualities of the 



pair of outputs from two different systems are scored by 
listeners using 7-point comparison mean opinion score 
(CMOS) scale [27]. The CMOS scale is a 7-point scale, that 
is, +3 for much better, +2 for better, +1 for slightly better, 0 
for about the same, -1 for slightly worse, -2 for worse, and -3 
for much worse. 

1) Subjective evaluation of speaker adaptation method and 
speaker dependent method 

We first evaluated the quality of the synthesized speech for 
the speech generated from the adapted model and the speaker-
dependent model by a CCR test. In this experiment, 355 
sentences of the target speaker are used for adapting the 
average voice model and training the speaker-dependent 
model.

Figure 2 shows the scores with 95% confidence interval of 
the test. From the result, we can see that adapting the average 
voice model to the target speaker becomes favorable when 
available speech of the target speaker is limited, comparing 
with the speaker-dependent model. 

2) Subjective evaluation of speaker adaptation method 
with different number of adaptation data 

We next evaluated the quality of the synthesized speech of 
the above-mentioned technique when the number of the target 
speaker’ speech data is changing. At first, we used 355 
utterances of the target speaker next we changed it to 187 
utterances and at last to 88 utterances.

Figure 3 shows the result with 95% confidence interval of 
the test. The results show that by changing the number of 
adapting data, the quality of synthesized speech would remain 
unchanged, so by having a small number of data we can 
synthesize speech with satisfactory quality. In other words, by 
increasing the number of adapting data the quality would be 
slightly better but not significantly. In contrast, by reducing 
training data in speaker-dependent model the quality will 
reduce a lot. 

V. CONCLUSION 

In this paper, we have described the development and 
evaluation of the speaker-adaptive HMM-based Persian 
speech synthesis system. Persian linguistic information and 
contextual factors are considered in implementing this 

framework. From the results of the subjective tests, it is 
concluded that with a small amount of target speaker’ data we 
can generate high quality synthesized speech with the adapted 
model. Our future work is enhancing the quality of 
synthesized speech by improving the average voice model. 
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Figure 2. CCR test results for the speaker-dependent and adapted model.
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Figure 3. CCR test results for adapted model using different number of speech 
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